考研真题


1. 全国名校应用统计硕士《432统计学》考研真题精选及详解

2. 应用统计硕士《432统计学》名校考研真题(2017年前)详解

考研指导书


1. 浙江大学《概率论与数理统计》(第5版)配套题库【考研真题精选+章节题库】

文章封面图片的替代文本

浙江大学《概率论与数理统计》(第5版)配套题库【考研真题精选+章节题库】

书籍目录


第一部分 考研真题精选

第二部分 章节题库

部分内容


第一部分 考研真题精选

一、选择题

1设A,B,C为三个随机事件,且P(A)=P(B)=P(C)=1/4,P(AB)=0,P(AC)=P(BC)=1/12,则A,B,C中恰有一个事件发生的概率为(  )。[数一2020研]

A.3/4

B.2/3

C.1/2

D.5/12

【答案】D

【解析】只发生A事件的概率:

id:824aa773-66e1-4804-80c9-0cdc46e4b721;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

只发生B事件的概率:

id:c8232696-226a-4b88-ad56-921a14b2f09d;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

只发生C事件的概率:

id:db092d9a-39f3-4b0b-bb9d-ade4e7755fb3;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

A,B,C中恰有一个事件发生的概率:

id:528fd540-af9f-4ad6-bb85-8145af4c8ab1;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

故选择D项。

2设A,B为随机事件,则P(A)=P(B)的充分必要条件是(  )。[数一2019研]

A.P(A∪B)=P(A)+P(B)

B.P(AB)=P(A)P(B)

C.P(AB(_))=P(BA(_)

D.id:3b53676d-8fae-409d-b837-cb766431803d;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

【答案】C

【解析】选项A只能说明事件A与事件B不相容,选项B只能说明事件A与事件B相互独立,并不能说明P(A)=P(B),对选项D来说,若令B=A(_),等式恒成立,亦不能说明P(A)=P(B),故选C。

3若A,B为任意两个随机事件,则(  )。[数一、数三2015研]

A.P(AB)≤P(A)P(B)

B.P(AB)≥P(A)P(B)

C.P(AB)≤(P(A)+P(B))/2

D.P(AB)≥(P(A)+P(B))/2

【答案】C

【解析】由于AB⊂A,AB⊂B,按概率的基本性质,有P(AB)≤P(A)且P(AB)≤P(B),从而P(AB)≤(P(A)+P(B))/2,故选C项。

4设事件A,B相互独立,P(B)=0.5,P(A-B)=0.3则P(B-A)=(  )。[数一、数三2014研]

A.0.1

B.0.2

C.0.3

D.0.4

【答案】B

【解析】P(A-B)=0.3=P(A)-P(AB)=P(A)-P(A)P(B)=P(A)-0.5P(A)=0.5P(A),故P(A)=0.6,P(B-A)=P(B)-P(AB)=0.5-0.5P(A)=0.2。

5设随机变量X与Y相互独立,且都服从正态分布N(μ,σ2),则P{|X-Y|<1}(  )。[数一2019研]

A.与μ无关,而与σ2有关

B.与μ有关,而与σ2无关

C.与μ,σ2都有关

D.与μ,σ2都无关

【答案】A

【解析】因为X,Y相互独立且都服从N(μ,σ2),记Z=X-Y,则Z服从N(0,2σ2)分布,P{|Z|<1}只与σ2有关,因此P{|X-Y|<1}与μ无关,而与σ2有关,故选A。

6设随机变量X的概率密度f(x)满足f(1+x)=f(1-x),且

id:71e829da-d229-4a06-9a31-a785c78873b8;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

则P{X<0}=(  )。[数一2018研]

A.0.2

B.0.3

C.0.4

D.0.5

【答案】A

【解析】由f(1+x)=f(1-x),知f(x)的图像关于x=1对称,利用特殊值法:将f(x)看成随机变量X~N(1,σ2)的概率密度,根据正态分布的对称性,P{X<0}=0.2。

7设随机变量X~N(μ,σ2)(σ>0),记p=P{X≤μ+σ2},则(  )。[数一2017研]

A.p随着μ的增加而增加

B.p随着σ的增加而增加

C.p随着μ的增加而减少

D.p随着σ的增加而减少

【答案】B

【解析】因为p=P{X≤μ+σ2}=P{(X-μ)/σ≤σ}=Φ(σ),所以p的大小与μ无关,随着σ的增大而增大。

8设X1,X2,X3是随机变量,且X1~N(0,1),X2~N(0,22),X3~N(5,32),Pi=P{-2≤Xi≤2}(i=1,2,3),则(  )。[数一、数三2013研]

A.P1>P2>P3

B.P2>P1>P3

C.P3>P1>P2

D.P1>P3>P2

【答案】A

【解析】由X1~N(0,1),X2~N(0,22),X3~N(5,32),知

P1=P{-2≤X1≤2}=P{|X1|≤2}=2Φ(2)-1

P2=P{-2≤X2≤2}=P{-1≤X2/2≤1}=P{|X2/2|≤1}=2Φ(1)-1

故P1>P2,由X3~N(5,32)及概率密度的对称性知,P1>P2>P3

9设随机变量X的分布函数为id:ae501a04-6515-439e-8563-9c96e05ae140;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES,则P{X=1}=(  )。[数一,数三2010研]

A.0

B.1/2

C.1/2-e1

D.1-e1

【答案】C

【解析】P{X=1}=F(1)-F(1-0)=1-e1-1/2=1/2-e1

10设随机变量(X,Y)服从二维正态分布N(0,0;1,4;-1/2),下列随机变量中服从标准正态分布且与X独立的是(  )[数三2020研]

A.id:a50b1ee1-c134-435b-a444-56376f24a67d;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

B.id:c1a2fa76-ff9d-47b1-8002-2fcad53e9dcb;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

C.id:8e2eba5b-c77d-455d-900d-2e2c48487db3;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

D.id:159fcc3d-9c92-4498-852c-b0ff1d999092;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

【答案】C

【解析】由二维正态的性质知X+Y~N(μ,σ2),因

μ=E(X+Y)=E(X)+E(Y)=0

id:cff0ea84-fcbe-4fd4-9897-eb8d0b0ac2c7;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

id:8fe46d84-5cbb-4dd3-b8cc-3b2d88cefac8;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

id:a999830c-8967-4117-a223-a862b24cc12e;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES服从二维正态分布,而

id:eb46eac0-bacb-45db-b4bc-5611ab9a653e;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

id:219dc590-f4dc-43ce-bd90-5fd7df4c6503;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES与X不相关,由二维正态的性质知,说明: id:c40a856e-ba79-49ae-93dc-4a3f911e18e4;name:;source:;state:可处理;type:WMF;imagePath:;prfName:;prfExt:;noteState:;FounderCES与X独立。

故应选C项。

11设随机变量X与Y相互独立,且分别服从参数为1与参数为4的指数分布,则P{X<Y}=(  )。[数一2012研]

A.1/5

B.1/3

C.2/5

D.4/5

【答案】A

【解析】已知X~E(1),Y~E(4),故概率密度

id:d3d74a61-1316-44a9-8f4a-3a9d2c5eadc9;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

从而(X,Y)联合概率密度为

id:9dd3b224-c5e8-4852-9c6f-785c82e6625d;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

id:4ab902e7-dca5-4702-93cc-676aebdb656e;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

12设随机变量X,Y不相关,且EX=2,EY=1,DX=3,则E[X(X+Y-2)]=(  )。[数一2015研]

A.-3

B.3

C.-5

D.5

【答案】D

【解析】随机变量X,Y不相关,因此E(XY)=E(X)E(Y),进而得

E[X(X+Y-2)]=E(X2+XY-2X)=E(X2)+E(XY)-2E(X)=D(X)+E2(X)+E(X)·E(Y)-2E(X)=3+22+2×1-2×2=5

故选D项。

13设总体X~B(m,θ),X1,X2,…,Xn为来自该总体的简单随机样本,X(_)为样本均值,则id:518c4b30-29f5-464d-8d69-9d4fb5f18173;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES=(  )。[数三2015研]

A.(m-1)nθ(1-θ)

B.m(n-1)θ(1-θ)

C.(m-1)(n-1)θ(1-θ)

D.mnθ(1-θ)

【答案】B

【解析】根据样本方差id:6c38683e-7f4b-4c94-afb1-1af36d2c3ff5;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES的性质,有E(S2)=D(X)=mθ(1-θ)。

从而

id:323aeb68-ced9-4840-993b-c188d662261b;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

故选B项。

14设连续型随机变量X1,X2相互独立,且方差均存在,X1,X2的概率密度分别为f1(x),f2(x),随机变量Y1的概率密度为id:12c4bda3-2013-4671-af60-10630b6f2aa8;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES,随机变量Y2=(X1+X2)/2,则(  )。[数一2014研]

A.EY1>EY2,DY1>DY2

B.EY1=EY2,DY1=DY2

C.EY1=EY2,DY1<DY2

D.EY1=EY2,DY1>DY2

【答案】D

【解析】

id:89707490-e681-465b-b4f6-9d73c1c9c03a;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

id:f1340fad-7f5c-4dd3-a650-9f7b52790798;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

id:31ad0076-d1dc-4e7e-a16f-e0feb2d69ca3;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

15设X1,X2,…,Xn(n≥2)为来自总体N(μ,σ2)(σ>0)的简单随机样本,令

id:72be4f3a-f28b-4532-a917-0b70d4a928ee;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

id:ddfeac05-b57a-4fb1-b62b-6982e01c64e5;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

id:a1588590-1842-47cb-b28a-c1082cd64390;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

则(  )。[数三2018研]

A.id:a99fae27-2f71-4f23-973b-c57d5345c555;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

B.id:dd02e5d7-7bd3-47b4-966b-fc94abfc8199;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

C.id:ccc89f16-6e9b-436d-9b2f-8c13093ac758;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

D.id:64fb50d7-fa4c-45c9-9976-20b258c6f8bf;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

【答案】B

【解析】因为

id:3f23fd91-051e-4119-b24c-e54055f9588e;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

所以

id:1fda7e71-d806-4f04-8311-a6da25ac29d6;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

根据抽样定理得:

id:1b8a1d07-0a66-40e0-aab9-d5018d0155fe;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

X(_)与S2相互独立,所以

id:40406ae1-e696-4ab1-90e1-87792d422495;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

16设X1,X2,…,Xn(n≥2)为来自总体N(μ,1)的简单随机样本,记id:c913e5a3-6b01-4ead-aae8-7fd3bd210d69;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES,则下列结论中不正确的是(  )。[数一2017研]

A.id:0fa740f6-e3eb-42a8-b024-a4957e2adfe1;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES服从χ2分布

B.2(Xn-X12服从χ2分布

C.id:388c18a6-78f8-4df0-a1ca-e5452714798d;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES服从χ2分布

D.n(X(_)-μ)2服从χ2分布

【答案】B

【解析】A项,Xi-μ~N(0,1),故

id:a97b1c22-222e-43fa-9a48-f52cc9b68233;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

B项

id:a815dfda-68d1-4b14-8021-094e83e6469a;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

即(Xn-X12/2~χ2(1)。

C项,由

id:43f06740-09be-4af4-b224-6eb26aec7663;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

id:2e8314aa-c7ad-42eb-8580-46276783924a;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES

D项,(X(_)-μ)~N(0,1/n),则id:1e71d1c8-ee0a-4926-adc8-4a706e6b5a81;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES,所以n(X(_)-μ)2~χ2(1)。

17设X1,X2,X3为来自正态总体N(0,σ2)的简单随机样本,则统计量id:690618a7-a8db-40fe-b909-a4bb4937e841;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES服从的分布是(  )。[数三2014研]

A.F(1,1)

B.F(2,1)

C.t(1)

D.t(2)

【答案】C

【解析】由题意知,id:b1b34f4d-42f1-4904-8fd0-eced44d81a8a;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES,X1-X2~N(0,2σ2),id:e68abfab-155f-45ca-999b-a36ceaa41b65;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES,X3~N(0,σ2),所以X3/σ~N(0,1),X322~χ2(1),且id:38755ba0-8c3e-4772-97a6-57ff28b4b5b0;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES与X3/σ相互独立,故

id:c8dde3d8-c8c1-4a35-8a5c-40af60827de2;name:;source:;state:;type:;imagePath:;prfName:;prfExt:;noteState:;FounderCES


获取方式:扫码关注下面公众号,关注后

搜一搜

回复关键词【复旦大学432】或【复旦大学统计学】


声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。